RLM-Enhanced Memory Architecture for AI Agent Harnesses

RLM-Enhanced Persistent Memory Architecture
For AI Agent Harnesses
A Comprehensive Technical Implementation Plan
Integrating Recursive Language Model Patterns with
SQLite, Vector Databases, and Cross-Platform Plugin Architecture
Prepared for: Return My Time Consulting
January 2026


Executive Summary
This document presents a comprehensive technical plan for extending AI agent harnesses (starting with Clawdbot but designed for portability) with persistent memory capabilities. The plan integrates insights from recent research on Recursive Language Models (RLMs) to create a memory system that can effectively manage arbitrarily long context while maintaining agent effectiveness across sessions.
The core innovation combines three architectural patterns: structured persistence via SQLite with JSONB-style storage for session state and facts, semantic retrieval via vector databases for context-aware memory recall, and RLM-inspired recursive decomposition for intelligent memory management at scale.
Key Research Insights Applied
The RLM research paper (Zhang et al., 2025) demonstrates that treating long prompts as external environment variables that can be programmatically examined and decomposed allows LLMs to handle inputs up to two orders of magnitude beyond their context windows. Key findings integrated into this plan:
1. Context rot occurs as both a function of input length AND task complexity
1. RLMs outperform base models by 2x while maintaining comparable or lower costs
1. The REPL environment pattern enables symbolic manipulation of arbitrarily long data
1. Recursive sub-calling provides strong benefits for information-dense inputs
1. Filtering input using code execution based on model priors dramatically reduces processing costs
Recommended Approach
A hybrid SQLite + Vector database architecture, extended with RLM patterns for intelligent memory retrieval and consolidation. This approach is implemented as a portable plugin system that can work across multiple agent harnesses (Clawdbot, Claude Agent SDK, LangGraph, etc.) while avoiding vendor lock-in.


1. Problem Analysis: Why Agents Forget
1.1 The Memory Problem in Current Agent Architectures
Current AI agent harnesses like Clawdbot face four fundamental memory challenges that cause agents to lose effectiveness over time:
Context Window Exhaustion
When sessions approach token limits (200K for Claude models), auto-compaction summarizes older conversation history. While this preserves semantic content, it loses specific details, tool outputs, and nuanced context that may be critical for maintaining continuity.
Session Boundary Discontinuity
Default idle timeouts (60 minutes in Clawdbot) create new session IDs. Commands like /new or /reset start fresh sessions. New sessions don't inherit previous context beyond what's explicitly stored in workspace files.
Workspace File Fragility
Current memory relies on the agent proactively writing to markdown files before compaction occurs. If the agent doesn't write, information vanishes when the context window rotates.
Bootstrap Truncation
Files exceeding character limits (20,000 in Clawdbot) are truncated, preventing large knowledge bases from being fully loaded at session start.
1.2 The RLM Solution: Memory as Environment
The RLM research provides a paradigm shift: instead of trying to fit all memory into the context window, treat memory as an external environment that the agent can programmatically query, filter, and analyze. Key patterns that apply to memory management:
	RLM Pattern
	Memory Application

	REPL Environment
	Memory stored in SQLite/Vector DB, queried programmatically via tools

	Recursive Sub-calls
	Complex memory queries decomposed into simpler retrieval operations

	Code-based Filtering
	Agent uses regex, keyword search, semantic filters before loading context

	Variable Buffering
	Retrieved memories accumulated in working memory before final synthesis

	Answer Verification
	Memory retrieval results validated through sub-LM calls




2. Architecture Options Analysis
2.1 Option A: Enhanced SQLite (Structured Persistence)
Extend Clawdbot's existing SQLite infrastructure with comprehensive session and memory storage.
Schema Design
CREATE TABLE session_memories (
    id TEXT PRIMARY KEY,
    session_id TEXT NOT NULL,
    user_id TEXT,
    memory_type TEXT,  -- 'fact', 'preference', 'episode', 'tool_result'
    content TEXT,
    metadata JSON,     -- SQLite 3.45+ JSONB
    importance_score REAL DEFAULT 0.5,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    last_accessed TIMESTAMP,
    access_count INTEGER DEFAULT 0
);
Advantages
1. Zero additional infrastructure - single file deployment
1. ACID transactions for data integrity
1. Familiar SQL interface for querying
1. Works completely offline
1. Extends existing Clawdbot infrastructure
Limitations
1. No native semantic search without sqlite-vec extension
1. Requires explicit extraction logic for memory creation
1. Keyword-based retrieval may miss semantically related memories
2.2 Option B: Vector Database (Semantic Retrieval)
Add a dedicated vector store for semantic similarity search across all memories.
Recommended Vector Database: LanceDB
LanceDB is recommended for this architecture because:
1. Serverless/embedded - no separate database process needed
1. File-based storage aligns with Clawdbot's existing patterns
1. 2000x faster than Parquet, handles 1B vectors in <100ms
1. Multi-modal support for text, images, and documents
1. Python/TypeScript/Rust bindings for cross-platform development
1. Works with local embedding models (avoiding API costs)
Advantages
1. Natural language queries ("What did we discuss about X?")
1. Cross-session pattern matching and relevance ranking
1. Semantic deduplication prevents memory bloat
1. Retrieval quality scales with embedding model quality
Limitations
1. Requires embedding generation (compute cost)
1. Additional storage overhead for embeddings
1. Embedding model dependency (though local models work well)
2.3 Option C: Hybrid Architecture (Recommended)
Combine structured and semantic storage with RLM-style retrieval orchestration for comprehensive memory capabilities.
Architecture Diagram
┌─────────────────────────────────────────────────────────────────┐
│                  RLM-Enhanced Memory Layer                      │
├────────────────────────────────┬────────────────────────────────┤
│   SQLite (Structured)          │   LanceDB (Semantic)           │
│                                │                                 │
│ • Session metadata             │ • Conversation embeddings       │
│ • User facts/preferences       │ • Memory similarity search      │
│ • Conversation summaries       │ • Context retrieval             │
│ • Tool result caching          │ • Cross-session patterns        │
│ • Usage analytics              │ • Semantic deduplication        │
└────────────────────────────────┴────────────────────────────────┘
                                 │
                    ┌────────────┴────────────┐
                    │  RLM Retrieval Engine   │
                    │  (Recursive Query +     │
                    │   Hybrid Search + RRF)  │
                    └─────────────────────────┘
When to Use Each Store
	Structured (SQLite)
	Semantic (LanceDB)

	Exact fact lookup by key
	"What did we discuss about X?"

	Session state management
	Finding related memories

	Key-value preferences
	Context-aware retrieval

	Token usage tracking
	Relevance ranking

	Conversation branching
	Cross-session pattern detection




3. RLM Integration Patterns for Memory Management
3.1 Memory as External Environment
Following the RLM paradigm, memories are not loaded directly into context. Instead, the agent is given tools to programmatically query, filter, and analyze the memory store:
# Agent receives these memory tools
memory_search(query: str, top_k: int) -> List[Memory]
memory_store(content: str, type: str, importance: float) -> Memory
memory_recall_recent(n: int, user_id: str) -> List[Memory]
memory_recall_by_type(type: str, limit: int) -> List[Memory]
memory_update(id: str, content: str) -> Memory
memory_forget(id: str) -> bool
3.2 Recursive Memory Retrieval
Complex memory queries are decomposed into simpler operations, following the RLM pattern of recursive sub-calling:
def retrieve_with_rlm_pattern(query: str, user_id: str):
    # Step 1: Initial broad semantic search
    semantic_results = lancedb_search(embed(query), top_k=20)
    
    # Step 2: Filter using code (RLM pattern)
    filtered = [m for m in semantic_results 
                if m.user_id == user_id and m.importance > 0.4]
    
    # Step 3: If results insufficient, recursive decomposition
    if len(filtered) < 3:
        # Break query into sub-queries
        sub_queries = llm_decompose_query(query)
        for sub_q in sub_queries:
            filtered.extend(retrieve_with_rlm_pattern(sub_q, user_id))
    
    # Step 4: Aggregate and rank (like RLM answer verification)
    return reciprocal_rank_fusion(filtered)
3.3 Pre-Compaction Memory Flush
Hook into the agent's compaction event to extract and persist memories before context is lost:
# Pre-compaction hook (Clawdbot plugin)
async def on_pre_compaction(session, context):
    # Use sub-LLM call to extract important information
    extraction_prompt = f"""
    The following conversation is about to be compacted.
    Extract key facts, decisions, and user preferences to remember:
    
    {context[-50000:]}  # Last 50K chars
    """
    
    memories = await llm_extract_memories(extraction_prompt)
    
    for memory in memories:
        await memory_store(
            content=memory.content,
            type=memory.type,
            importance=memory.importance
        )
3.4 Intelligent Memory Consolidation
Apply RLM chunking and recursive patterns to consolidate similar memories:
async def consolidate_memories():
    # Group similar memories using semantic clustering
    all_memories = await memory_recall_all()
    clusters = semantic_cluster(all_memories, threshold=0.85)
    
    for cluster in clusters:
        if len(cluster) > 3:
            # Use sub-LLM to synthesize cluster
            consolidated = await llm_consolidate(cluster)
            
            # Replace cluster with consolidated memory
            for old_mem in cluster:
                await memory_forget(old_mem.id)
            await memory_store(consolidated, importance=max_importance(cluster))


4. Cross-Platform Plugin Architecture
4.1 Design Principles
The memory system is designed as a portable plugin that can work across multiple agent harnesses while avoiding vendor lock-in:
1. Abstraction Layer: Common interface for memory operations regardless of underlying harness
1. Adapter Pattern: Specific adapters for Clawdbot, Claude Agent SDK, LangGraph, etc.
1. Configuration-Driven: All harness-specific behavior controlled via config, not code
1. Graceful Degradation: System works with just SQLite if vector DB unavailable
4.2 Plugin Package Structure
rlm-memory-plugin/
├── package.json
├── tsconfig.json
├── src/
│   ├── index.ts                    # Main entry point
│   ├── core/
│   │   ├── memory-store.ts         # Abstract memory store interface
│   │   ├── sqlite-store.ts         # SQLite implementation
│   │   ├── vector-store.ts         # LanceDB implementation
│   │   └── hybrid-retriever.ts     # RLM-style retrieval orchestration
│   ├── tools/
│   │   ├── memory-search.ts        # Semantic search tool
│   │   ├── memory-store.ts         # Store new memory tool
│   │   ├── memory-recall.ts        # Recall by criteria tool
│   │   └── memory-manage.ts        # Update/delete tools
│   ├── adapters/
│   │   ├── clawdbot-adapter.ts     # Clawdbot integration
│   │   ├── claude-sdk-adapter.ts   # Claude Agent SDK integration
│   │   ├── langgraph-adapter.ts    # LangGraph integration
│   │   └── base-adapter.ts         # Abstract adapter interface
│   ├── hooks/
│   │   ├── pre-compaction.ts       # Memory extraction before compaction
│   │   ├── session-start.ts        # Memory loading on session init
│   │   └── session-end.ts          # Memory persistence on session close
│   └── utils/
│       ├── embeddings.ts           # Embedding generation (local/API)
│       ├── chunking.ts             # Text chunking strategies
│       └── importance-scorer.ts    # LLM-based importance scoring
├── config/
│   └── default.json                # Default configuration
└── scripts/
    ├── migrate.ts                  # Database migration scripts
    └── export-import.ts            # Memory export/import utilities
4.3 Abstract Memory Store Interface
interface IMemoryStore {
    // Core operations
    store(memory: Memory): Promise<Memory>;
    search(query: string, options: SearchOptions): Promise<Memory[]>;
    recall(criteria: RecallCriteria): Promise<Memory[]>;
    update(id: string, updates: Partial<Memory>): Promise<Memory>;
    delete(id: string): Promise<boolean>;
    
    // Batch operations
    storeBatch(memories: Memory[]): Promise<Memory[]>;
    consolidate(options: ConsolidateOptions): Promise<void>;
    
    // Lifecycle
    initialize(): Promise<void>;
    close(): Promise<void>;
}
4.4 Adapter Interface for Agent Harnesses
interface IAgentAdapter {
    // Harness identification
    readonly name: string;
    readonly version: string;
    
    // Tool registration
    registerTools(tools: MemoryTool[]): void;
    
    // Hook registration
    onPreCompaction(handler: CompactionHandler): void;
    onSessionStart(handler: SessionHandler): void;
    onSessionEnd(handler: SessionHandler): void;
    
    // Context injection
    injectMemoryContext(memories: Memory[]): string;
    
    // Configuration
    getConfig(): AdapterConfig;
}


5. Implementation Roadmap
5.1 Phase 1: Foundation (Weeks 1-2)
Establish core infrastructure with SQLite-based structured persistence.
Week 1: Core Infrastructure
Task 1.1: Initialize Plugin Scaffold
29. Create npm package with TypeScript configuration
29. Set up build tooling (esbuild for bundling)
29. Configure testing framework (Vitest)
29. Deliverable: Empty plugin that can be installed in Clawdbot
Task 1.2: Implement SQLite Memory Store
29. Create database schema with migrations
29. Implement CRUD operations for memories
29. Add JSONB metadata support for flexible attributes
29. Implement importance scoring with decay function
29. Deliverable: Functional SQLite store with tests
Task 1.3: Create Basic Memory Tools
29. Implement memory_store tool
29. Implement memory_recall tool (by recency, type, importance)
29. Implement memory_update and memory_forget tools
29. Deliverable: Tools callable from agent
Week 2: Clawdbot Integration
Task 2.1: Create Clawdbot Adapter
29. Implement IAgentAdapter interface for Clawdbot
29. Register tools via Clawdbot plugin system
29. Configure file paths for ~/.clawdbot/memory/
29. Deliverable: Plugin installable via clawdbot plugins install
Task 2.2: Implement Pre-Compaction Hook
29. Hook into Clawdbot's compaction event
29. Create LLM-based memory extraction prompt
29. Test extraction quality with sample conversations
29. Deliverable: Automatic memory extraction before context loss
Task 2.3: Create Memory Injection Skill
29. Write SKILL.md for memory-persist skill
29. Configure skill to load relevant memories at session start
29. Test memory continuity across sessions
29. Deliverable: Agent maintains context across sessions
5.2 Phase 2: Semantic Layer (Weeks 3-4)
Add vector database for semantic search capabilities.
Week 3: Vector Store Implementation
Task 3.1: Set Up LanceDB Integration
29. Add LanceDB dependency
29. Create vector store at ~/.clawdbot/memory/{agentId}.lance/
29. Implement embedding generation with local model (nomic-embed-text)
29. Configure fallback to OpenAI embeddings if needed
29. Deliverable: Vector store initialized and populated
Task 3.2: Implement Dual-Write Pattern
29. Modify memory_store to write to both SQLite and LanceDB
29. Ensure atomicity (both succeed or both fail)
29. Add background sync for eventual consistency
29. Deliverable: All memories exist in both stores
Task 3.3: Create Semantic Search Tool
29. Implement memory_search with embedding-based retrieval
29. Add filtering by metadata (user, type, date range)
29. Return relevance scores with results
29. Deliverable: Agent can search memories by meaning
Week 4: Hybrid Retrieval
Task 4.1: Implement Reciprocal Rank Fusion
29. Create hybrid retriever that queries both stores
29. Implement RRF algorithm for result merging
29. Add configurable weighting between semantic/structured
29. Deliverable: Best results from both retrieval methods
Task 4.2: Add RLM-Style Query Decomposition
29. Implement query decomposition for complex questions
29. Create recursive retrieval with depth limit
29. Add result aggregation and deduplication
29. Deliverable: Complex queries handled via sub-queries
Task 4.3: Optimize Retrieval Performance
29. Add caching for frequently accessed memories
29. Implement batch embedding for efficiency
29. Profile and optimize hot paths
29. Deliverable: Sub-100ms retrieval for typical queries
5.3 Phase 3: Intelligent Management (Weeks 5-6)
Add automatic memory lifecycle management using RLM patterns.
Week 5: Memory Lifecycle
Task 5.1: Implement Importance Scoring
29. Create LLM-based importance scorer
29. Score memories on creation based on content
29. Implement decay function (importance decreases over time if not accessed)
29. Deliverable: Memories automatically prioritized
Task 5.2: Add Memory Consolidation
29. Implement semantic clustering of similar memories
29. Create LLM-based consolidation (merge cluster into summary)
29. Schedule consolidation during low-activity periods
29. Deliverable: Memory bloat automatically controlled
Task 5.3: Implement Conflict Resolution
29. Detect contradictory memories (semantic similarity + opposite content)
29. Create resolution strategies (newest wins, ask user, merge)
29. Log conflicts for user review
29. Deliverable: Consistent memory state maintained
Week 6: Context Injection Optimization
Task 6.1: Smart Memory Selection for Session Start
29. Analyze last session to predict needed memories
29. Load memories based on predicted relevance
29. Stay within bootstrap token limits
29. Deliverable: Sessions start with relevant context
Task 6.2: Dynamic Memory Loading
29. Monitor conversation for memory retrieval triggers
29. Automatically fetch relevant memories mid-conversation
29. Inject without interrupting user flow
29. Deliverable: Memories surface when relevant
Task 6.3: Integration Testing and Documentation
29. End-to-end testing across multi-session scenarios
29. Performance benchmarking
29. Create user documentation
29. Deliverable: Production-ready plugin
5.4 Phase 4: Multi-Platform Support (Weeks 7-8)
Extend plugin to work with other agent harnesses.
Week 7: Claude Agent SDK Adapter
Task 7.1: Create Claude SDK Adapter
29. Implement IAgentAdapter for Claude Agent SDK
29. Map memory tools to Claude SDK tool format
29. Configure MCP server integration if applicable
29. Deliverable: Plugin works with Claude Agent SDK
Task 7.2: Create LangGraph Adapter
29. Implement IAgentAdapter for LangGraph
29. Map memory tools to LangGraph tool nodes
29. Integrate with LangGraph checkpointing
29. Deliverable: Plugin works with LangGraph
Week 8: Deployment and Distribution
Task 8.1: Package for Distribution
29. Create npm package
29. Write installation documentation for each harness
29. Set up CI/CD for releases
29. Deliverable: Publicly available plugin
Task 8.2: Create Migration Tools
29. Build memory export/import utilities
29. Create migration from Clawdbot workspace files to new system
29. Support backup and restore
29. Deliverable: Easy migration path for existing users


6. Configuration Reference
6.1 Default Configuration
{
  "memory": {
    "structured": {
      "path": "~/.clawdbot/memory/{agentId}.sqlite",
      "importanceThreshold": 0.4,
      "maxMemories": 50000,
      "decayRate": 0.95,
      "decayInterval": "24h"
    },
    "semantic": {
      "enabled": true,
      "path": "~/.clawdbot/memory/{agentId}.lance",
      "embeddingModel": "nomic-embed-text",
      "embeddingDimension": 768,
      "chunkSize": 400,
      "chunkOverlap": 50,
      "topK": 10
    },
    "retrieval": {
      "hybridWeight": 0.6,  // 0.6 semantic, 0.4 structured
      "maxRecursionDepth": 2,
      "rrfK": 60
    },
    "lifecycle": {
      "consolidationInterval": "24h",
      "consolidationThreshold": 0.85,
      "conflictResolution": "newest"
    },
    "injection": {
      "maxTokens": 8000,
      "strategy": "relevance"  // or "recency", "hybrid"
    }
  },
  "adapters": {
    "clawdbot": {
      "skillPath": "~/clawd/skills/rlm-memory",
      "hookPreCompaction": true,
      "hookSessionStart": true
    }
  }
}
6.2 Clawdbot Skill Configuration
---
name: rlm-memory
description: RLM-enhanced persistent memory system
metadata:
  clawdbot:
    always: true
    tools:
      - memory_search
      - memory_store
      - memory_recall
      - memory_update
      - memory_forget
---

## Memory Management Instructions

When working with this user:

1. **Check existing memories** at session start using memory_recall
2. **Store important information** when the user shares facts, preferences, or decisions
3. **Search memories** when answering questions that might reference past conversations
4. **Update memories** when information changes
5. **Use appropriate importance scoring** (0.0-1.0):
   - 0.9+: Critical user preferences, key decisions
   - 0.7-0.9: Important facts, project details
   - 0.5-0.7: Contextual information, conversation highlights
   - <0.5: Transient information, may be auto-pruned

Memory types: 'fact', 'preference', 'decision', 'episode', 'tool_result'


7. Where RLM Patterns Apply in the Roadmap
This section maps specific RLM research findings to implementation tasks, showing how the academic insights translate into practical features:
	RLM Finding
	Implementation Task
	Phase/Week

	Prompt as environment variable
	Memory stored in SQLite/LanceDB, queried via tools
	Phase 1, Week 1

	Code-based filtering with model priors
	Hybrid retrieval with metadata filters
	Phase 2, Week 4

	Recursive sub-calling for dense tasks
	Query decomposition for complex questions
	Phase 2, Week 4

	Variable buffering for output
	Memory accumulation before injection
	Phase 3, Week 6

	Answer verification via sub-LM
	Memory consolidation with LLM synthesis
	Phase 3, Week 5

	Chunking and semantic transformation
	Text chunking with overlap for embeddings
	Phase 2, Week 3

	Pre-compaction processing
	Pre-compaction memory extraction hook
	Phase 1, Week 2


7.1 Critical RLM Insights for Memory Systems
Insight 1: Context rot scales with task complexity
The research shows that more complex tasks exhibit context degradation at shorter lengths. This means our memory retrieval must be complexity-aware - simple fact lookups can use more context, while complex reasoning tasks should retrieve fewer, more relevant memories.
Insight 2: The REPL pattern enables scaling beyond context windows
By treating memory as an external environment (database) rather than injecting it directly, we can scale to arbitrarily large memory stores. The agent uses tools to query and filter before loading relevant context.
Insight 3: Recursive decomposition handles information-dense tasks
When a memory query is complex ("What was our conclusion about X given Y and Z?"), decomposing into sub-queries and aggregating results dramatically improves accuracy. Our hybrid retriever implements this pattern.
Insight 4: RLMs maintain performance at 10M+ tokens
The memory system can store tens of thousands of memories (equivalent to millions of tokens) because retrieval is selective. We never need to load all memories - just the relevant ones.


8. Recommendations and Next Steps
8.1 Recommended Implementation Path
1. Start with Phase 1 (SQLite foundation) - provides immediate value with minimal complexity
1. Add semantic layer in Phase 2 only after validating structured persistence works well
1. Implement RLM patterns (query decomposition) in Phase 2-3 as retrieval sophistication grows
1. Extend to other harnesses in Phase 4 only after Clawdbot integration is stable
8.2 Risk Mitigation
Risk: Embedding model dependency
Mitigation: Use local models (nomic-embed-text) with fallback to cloud APIs. Store raw text alongside embeddings for re-embedding if needed.
Risk: Memory bloat
Mitigation: Implement importance scoring with decay, consolidation, and configurable limits. Default max 50,000 memories per agent.
Risk: Retrieval latency
Mitigation: Use LanceDB's fast vector search (<100ms for millions of vectors). Add caching for frequently accessed memories.
Risk: Migration complexity
Mitigation: Provide migration tools from existing workspace files. Support gradual adoption (new memories in new system, old files still readable).
8.3 Success Metrics
1. Memory persistence: 100% of important facts retained across sessions
1. Retrieval relevance: >80% of retrieved memories rated as relevant by user
1. Retrieval latency: <200ms for typical queries
1. Memory efficiency: <1GB storage for 50,000 memories including embeddings
1. Session continuity: User reports improved context awareness vs. baseline
8.4 Immediate Next Steps
1. Review this plan and provide feedback on scope/priorities
1. Set up plugin repository with TypeScript configuration
1. Begin Task 1.1 (Initialize Plugin Scaffold)
1. Create test fixtures with sample conversations for validation

— End of Document —
Page 
