version: "3.8" name: immich services: immich-server: container_name: immich_server image: ghcr.io/immich-app/immich-server:${IMMICH_VERSION:-release} devices: - /dev/dri:/dev/dri # command: [ "start.sh", "immich" ] volumes: - ${UPLOAD_LOCATION}:/usr/src/app/upload - /etc/localtime:/etc/localtime:ro - /mnt/disks/vmdrive/ffmpeg:/usr/bin/ffmpeg:ro - /mnt/disks/vmdrive/ffmpeg.real:/usr/bin/ffmpeg.real:ro env_file: - .env ports: - 2283:2283 depends_on: - redis - database restart: always immich-machine-learning: container_name: immich_machine_learning # For hardware acceleration, add one of -[armnn, cuda, openvino] to the image tag. # Example tag: ${IMMICH_VERSION:-release}-cuda image: ghcr.io/immich-app/immich-machine-learning:${IMMICH_VERSION:-release} # extends: # uncomment this section for hardware acceleration - see https://immich.app/docs/features/ml-hardware-acceleration # file: hwaccel.ml.yml # service: cpu # set to one of [armnn, cuda, openvino, openvino-wsl] for accelerated inference - use the `-wsl` version for WSL2 where applicable volumes: - model-cache:/cache env_file: - .env restart: always redis: container_name: immich_redis image: redis:6.2-alpine@sha256:afb290a0a0d0b2bd7537b62ebff1eb84d045c757c1c31ca2ca48c79536c0de82 restart: always database: container_name: immich_postgres # image: tensorchord/pgvecto-rs:pg14-v0.2.0@sha256:90724186f0a3517cf6914295b5ab410db9ce23190a2d9d0b9dd6463e3fa298f0 image: ghcr.io/immich-app/postgres:14-vectorchord0.3.0-pgvectors0.2.0 env_file: - .env environment: POSTGRES_PASSWORD: ${DB_PASSWORD} POSTGRES_USER: ${DB_USERNAME} POSTGRES_DB: ${DB_DATABASE_NAME} DB_STORAGE_TYPE: 'HDD' volumes: - pgdata:/var/lib/postgresql/data restart: always volumes: pgdata: model-cache: