Traceback (most recent call last): File "/workspace/kohya_ss/train_network.py", line 783, in train(args) File "/workspace/kohya_ss/train_network.py", line 610, in train noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/accelerate/utils/operations.py", line 495, in __call__ return convert_to_fp32(self.model_forward(*args, **kwargs)) File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/torch/amp/autocast_mode.py", line 12, in decorate_autocast return func(*args, **kwargs) File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/diffusers/models/unet_2d_condition.py", line 381, in forward sample, res_samples = downsample_block( File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/diffusers/models/unet_2d_blocks.py", line 612, in forward hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/diffusers/models/attention.py", line 216, in forward hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep) File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/diffusers/models/attention.py", line 484, in forward hidden_states = self.attn1(norm_hidden_states) + hidden_states File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "/workspace/kohya_ss/library/train_util.py", line 1846, in forward_xformers out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/xformers/ops/fmha/__init__.py", line 192, in memory_efficient_attention return _memory_efficient_attention( File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/xformers/ops/fmha/__init__.py", line 295, in _memory_efficient_attention return _fMHA.apply( File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/xformers/ops/fmha/__init__.py", line 41, in forward out, op_ctx = _memory_efficient_attention_forward_requires_grad( File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/xformers/ops/fmha/__init__.py", line 320, in _memory_efficient_attention_forward_requires_grad op = _dispatch_fw(inp) File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/xformers/ops/fmha/dispatch.py", line 94, in _dispatch_fw return _run_priority_list( File "/workspace/kohya_ss/venv/lib/python3.10/site-packages/xformers/ops/fmha/dispatch.py", line 69, in _run_priority_list raise NotImplementedError(msg) NotImplementedError: No operator found for `memory_efficient_attention_forward` with inputs: query : shape=(5, 8960, 8, 40) (torch.bfloat16) key : shape=(5, 8960, 8, 40) (torch.bfloat16) value : shape=(5, 8960, 8, 40) (torch.bfloat16) attn_bias : p : 0.0 `flshattF` is not supported because: xFormers wasn't build with CUDA support Operator wasn't built - see `python -m xformers.info` for more info `tritonflashattF` is not supported because: xFormers wasn't build with CUDA support requires A100 GPU `cutlassF` is not supported because: xFormers wasn't build with CUDA support Operator wasn't built - see `python -m xformers.info` for more info `smallkF` is not supported because: xFormers wasn't build with CUDA support dtype=torch.bfloat16 (supported: {torch.float32}) max(query.shape[-1] != value.shape[-1]) > 32 Operator wasn't built - see `python -m xformers.info` for more info unsupported embed per head: 40