Regularisation images are used... Will double the number of steps required... max_train_steps = 1920 stop_text_encoder_training = 0 lr_warmup_steps = 192 accelerate launch --num_cpu_threads_per_process=2 "train_db.py" --enable_bucket --pretrained_model_name_or_path="C:/SD/stable-diffusion-webui/models/Stable-diffusion/realisticVisionV20_v20.safetensors" --train_data_dir="C:/SD/training/Kohya video/img" --reg_data_dir="C:/SD/training/Kohya video/reg" --resolution=512,512 --output_dir="C:/SD/training/Kohya video/model" --logging_dir="C:/SD/training/Kohya video/log" --save_model_as=safetensors --output_name="test1" --max_data_loader_n_workers="0" --learning_rate="0.0001" --lr_scheduler="cosine" --lr_warmup_steps="192" --train_batch_size="1" --max_train_steps="1920" --save_every_n_epochs="1" --mixed_precision="no" --save_precision="float" --optimizer_type="AdamW8bit" --max_data_loader_n_workers="0" --bucket_reso_steps=64 --mem_eff_attn --gradient_checkpointing --bucket_no_upscale prepare tokenizer prepare images. found directory C:\SD\training\Kohya video\img\40_FHDMNSX manchester united player portrait contains 8 image files found directory C:\SD\training\Kohya video\reg\1_manchester united player portrait contains 323 image files 320 train images with repeating. 323 reg images. some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります [Dataset 0] batch_size: 1 resolution: (512, 512) enable_bucket: True min_bucket_reso: 256 max_bucket_reso: 1024 bucket_reso_steps: 64 bucket_no_upscale: True [Subset 0 of Dataset 0] image_dir: "C:\SD\training\Kohya video\img\40_FHDMNSX manchester united player portrait" image_count: 8 num_repeats: 40 shuffle_caption: False keep_tokens: 0 caption_dropout_rate: 0.0 caption_dropout_every_n_epoches: 0 caption_tag_dropout_rate: 0.0 color_aug: False flip_aug: False face_crop_aug_range: None random_crop: False token_warmup_min: 1, token_warmup_step: 0, is_reg: False class_tokens: FHDMNSX manchester united player portrait caption_extension: .caption [Subset 1 of Dataset 0] image_dir: "C:\SD\training\Kohya video\reg\1_manchester united player portrait" image_count: 323 num_repeats: 1 shuffle_caption: False keep_tokens: 0 caption_dropout_rate: 0.0 caption_dropout_every_n_epoches: 0 caption_tag_dropout_rate: 0.0 color_aug: False flip_aug: False face_crop_aug_range: None random_crop: False token_warmup_min: 1, token_warmup_step: 0, is_reg: True class_tokens: manchester united player portrait caption_extension: .caption [Dataset 0] loading image sizes. 100%|██████████████████████████████████████████████████████████████████████████████| 328/328 [00:00<00:00, 2232.92it/s] make buckets min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is set, because bucket reso is defined by image size automatically / bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視されます number of images (including repeats) / 各bucketの画像枚数(繰り返し回数を含む) bucket 0: resolution (512, 512), count: 640 mean ar error (without repeats): 0.0 prepare accelerator Using accelerator 0.15.0 or above. load StableDiffusion checkpoint loading u-net: loading vae: loading text encoder: Replace CrossAttention.forward to use FlashAttention (not xformers) prepare optimizer, data loader etc. ===================================BUG REPORT=================================== Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link ================================================================================ CUDA SETUP: Loading binary C:\kohya_ss\venv\lib\site-packages\bitsandbytes\libbitsandbytes_cuda116.dll... use 8-bit AdamW optimizer | {} running training / 学習開始 num train images * repeats / 学習画像の数×繰り返し回数: 320 num reg images / 正則化画像の数: 323 num batches per epoch / 1epochのバッチ数: 640 num epochs / epoch数: 3 batch size per device / バッチサイズ: 1 total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): 1 gradient ccumulation steps / 勾配を合計するステップ数 = 1 total optimization steps / 学習ステップ数: 1920 steps: 0%| | 0/1920 [00:00 File "C:\kohya_ss\venv\lib\site-packages\accelerate\commands\accelerate_cli.py", line 45, in main args.func(args) File "C:\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py", line 1104, in launch_command simple_launcher(args) File "C:\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py", line 567, in simple_launcher raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) subprocess.CalledProcessError: Command '['C:\\kohya_ss\\venv\\Scripts\\python.exe', 'train_db.py', '--enable_bucket', '--pretrained_model_name_or_path=C:/SD/stable-diffusion-webui/models/Stable-diffusion/realisticVisionV20_v20.safetensors', '--train_data_dir=C:/SD/training/Kohya video/img', '--reg_data_dir=C:/SD/training/Kohya video/reg', '--resolution=512,512', '--output_dir=C:/SD/training/Kohya video/model', '--logging_dir=C:/SD/training/Kohya video/log', '--save_model_as=safetensors', '--output_name=test1', '--max_data_loader_n_workers=0', '--learning_rate=0.0001', '--lr_scheduler=cosine', '--lr_warmup_steps=192', '--train_batch_size=1', '--max_train_steps=1920', '--save_every_n_epochs=1', '--mixed_precision=no', '--save_precision=float', '--optimizer_type=AdamW8bit', '--max_data_loader_n_workers=0', '--bucket_reso_steps=64', '--mem_eff_attn', '--gradient_checkpointing', '--bucket_no_upscale']' returned non-zero exit status 1.