Folder 40_FHDMNSX manchester united player portrait: 8 images found Folder 40_FHDMNSX manchester united player portrait: 320 steps max_train_steps = 3840 stop_text_encoder_training = 0 lr_warmup_steps = 384 accelerate launch --num_cpu_threads_per_process=2 "train_network.py" --enable_bucket --pretrained_model_name_or_path="C:/SD/stable-diffusion-webui/models/Stable-diffusion/realisticVisionV20_v20.safetensors" --train_data_dir="C:/SD/training/Kohya video/img" --reg_data_dir="C:/SD/training/Kohya video/reg" --resolution=512,512 --output_dir="C:/SD/training/Kohya video/model" --logging_dir="C:/SD/training/Kohya video/log" --network_alpha="1" --training_comment="FHDMNSX is the instance prompt and manchester united player portrait is the class promptso use FHDMNSX manchester united player portrait to be able to use this model" --save_model_as=safetensors --network_module=networks.lora --text_encoder_lr=5e-5 --unet_lr=0.0001 --network_dim=128 --output_name="test1" --lr_scheduler_num_cycles="12" --learning_rate="0.0001" --lr_scheduler="cosine" --lr_warmup_steps="384" --train_batch_size="1" --max_train_steps="3840" --save_every_n_epochs="1" --mixed_precision="fp16" --save_precision="fp16" --seed="1234" --cache_latents --optimizer_type="AdamW8bit" --max_data_loader_n_workers="0" --bucket_reso_steps=64 --xformers --bucket_no_upscale prepare tokenizer Use DreamBooth method. prepare images. found directory C:\SD\training\Kohya video\img\40_FHDMNSX manchester united player portrait contains 8 image files found directory C:\SD\training\Kohya video\reg\1_manchester united player portrait contains 323 image files 320 train images with repeating. 323 reg images. some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります [Dataset 0] batch_size: 1 resolution: (512, 512) enable_bucket: True min_bucket_reso: 256 max_bucket_reso: 1024 bucket_reso_steps: 64 bucket_no_upscale: True [Subset 0 of Dataset 0] image_dir: "C:\SD\training\Kohya video\img\40_FHDMNSX manchester united player portrait" image_count: 8 num_repeats: 40 shuffle_caption: False keep_tokens: 0 caption_dropout_rate: 0.0 caption_dropout_every_n_epoches: 0 caption_tag_dropout_rate: 0.0 color_aug: False flip_aug: False face_crop_aug_range: None random_crop: False token_warmup_min: 1, token_warmup_step: 0, is_reg: False class_tokens: FHDMNSX manchester united player portrait caption_extension: .caption [Subset 1 of Dataset 0] image_dir: "C:\SD\training\Kohya video\reg\1_manchester united player portrait" image_count: 323 num_repeats: 1 shuffle_caption: False keep_tokens: 0 caption_dropout_rate: 0.0 caption_dropout_every_n_epoches: 0 caption_tag_dropout_rate: 0.0 color_aug: False flip_aug: False face_crop_aug_range: None random_crop: False token_warmup_min: 1, token_warmup_step: 0, is_reg: True class_tokens: manchester united player portrait caption_extension: .caption [Dataset 0] loading image sizes. 100%|███████████████████████████████████████████████████████████████████████████████| 328/328 [00:01<00:00, 237.91it/s] make buckets min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is set, because bucket reso is defined by image size automatically / bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視 されます number of images (including repeats) / 各bucketの画像枚数(繰り返し回数を含む) bucket 0: resolution (512, 512), count: 640 mean ar error (without repeats): 0.0 prepare accelerator Using accelerator 0.15.0 or above. loading model for process 0/1 load StableDiffusion checkpoint loading u-net: loading vae: Downloading pytorch_model.bin: 100%|██████████████████████████████████████████████| 1.71G/1.71G [02:39<00:00, 10.7MB/s] C:\kohya_ss\venv\lib\site-packages\huggingface_hub\file_download.py:133: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\Users\Kashyap\.cache\huggingface\hub. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations. To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to see activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development warnings.warn(message) loading text encoder: Replace CrossAttention.forward to use xformers [Dataset 0] caching latents. 0%| | 0/328 [00:00 train(args) File "C:\kohya_ss\train_network.py", line 175, in train train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process) File "C:\kohya_ss\library\train_util.py", line 1391, in cache_latents dataset.cache_latents(vae, vae_batch_size, cache_to_disk, is_main_process) File "C:\kohya_ss\library\train_util.py", line 805, in cache_latents latents = vae.encode(img_tensors).latent_dist.sample().to("cpu") File "C:\kohya_ss\venv\lib\site-packages\diffusers\models\vae.py", line 566, in encode h = self.encoder(x) File "C:\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "C:\kohya_ss\venv\lib\site-packages\diffusers\models\vae.py", line 130, in forward sample = self.conv_in(sample) File "C:\kohya_ss\venv\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, **kwargs) File "C:\kohya_ss\venv\lib\site-packages\torch\nn\modules\conv.py", line 457, in forward return self._conv_forward(input, self.weight, self.bias) File "C:\kohya_ss\venv\lib\site-packages\torch\nn\modules\conv.py", line 453, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: "slow_conv2d_cpu" not implemented for 'Half' Traceback (most recent call last): File "C:\Users\Kashyap\AppData\Local\Programs\Python\Python310\lib\runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "C:\Users\Kashyap\AppData\Local\Programs\Python\Python310\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "C:\kohya_ss\venv\Scripts\accelerate.exe\__main__.py", line 7, in File "C:\kohya_ss\venv\lib\site-packages\accelerate\commands\accelerate_cli.py", line 45, in main args.func(args) File "C:\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py", line 1104, in launch_command simple_launcher(args) File "C:\kohya_ss\venv\lib\site-packages\accelerate\commands\launch.py", line 567, in simple_launcher raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) subprocess.CalledProcessError: Command '['C:\\kohya_ss\\venv\\Scripts\\python.exe', 'train_network.py', '--enable_bucket', '--pretrained_model_name_or_path=C:/SD/stable-diffusion-webui/models/Stable-diffusion/realisticVisionV20_v20.safetensors', '--train_data_dir=C:/SD/training/Kohya video/img', '--reg_data_dir=C:/SD/training/Kohya video/reg', '--resolution=512,512', '--output_dir=C:/SD/training/Kohya video/model', '--logging_dir=C:/SD/training/Kohya video/log', '--network_alpha=1', '--training_comment=FHDMNSX is the instance prompt and manchester united player portrait is the class promptso use FHDMNSX manchester united player portrait to be able to use this model', '--save_model_as=safetensors', '--network_module=networks.lora', '--text_encoder_lr=5e-5', '--unet_lr=0.0001', '--network_dim=128', '--output_name=test1', '--lr_scheduler_num_cycles=12', '--learning_rate=0.0001', '--lr_scheduler=cosine', '--lr_warmup_steps=384', '--train_batch_size=1', '--max_train_steps=3840', '--save_every_n_epochs=1', '--mixed_precision=fp16', '--save_precision=fp16', '--seed=1234', '--cache_latents', '--optimizer_type=AdamW8bit', '--max_data_loader_n_workers=0', '--bucket_reso_steps=64', '--xformers', '--bucket_no_upscale']' returned non-zero exit status 1.