CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with TORCH_USE_CUDA_DSA` to enable device-side assertions. 0%| | 0/20 [00:00, , False, False, 'positive', 'comma', 0, False, False, '', 1, '', 0, '', 0, '', True, False, False, False, 0, None, None, 50) {} Traceback (most recent call last): File "C:\Users\ZeroCool22\Desktop\Auto\modules\call_queue.py", line 56, in f res = list(func(*args, **kwargs)) File "C:\Users\ZeroCool22\Desktop\Auto\modules\call_queue.py", line 37, in f res = func(*args, **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\modules\txt2img.py", line 56, in txt2img processed = process_images(p) File "C:\Users\ZeroCool22\Desktop\Auto\modules\processing.py", line 486, in process_images res = process_images_inner(p) File "C:\Users\ZeroCool22\Desktop\Auto\modules\processing.py", line 636, in process_images_inner samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts) File "C:\Users\ZeroCool22\Desktop\Auto\modules\processing.py", line 836, in sample samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) File "C:\Users\ZeroCool22\Desktop\Auto\modules\sd_samplers_kdiffusion.py", line 351, in sample samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ File "C:\Users\ZeroCool22\Desktop\Auto\modules\sd_samplers_kdiffusion.py", line 227, in launch_sampling return func() File "C:\Users\ZeroCool22\Desktop\Auto\modules\sd_samplers_kdiffusion.py", line 351, in samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\repositories\k-diffusion\k_diffusion\sampling.py", line 145, in sample_euler_ancestral denoised = model(x, sigmas[i] * s_in, **extra_args) File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\modules\sd_samplers_kdiffusion.py", line 119, in forward x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\repositories\k-diffusion\k_diffusion\external.py", line 112, in forward eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\repositories\k-diffusion\k_diffusion\external.py", line 138, in get_eps return self.inner_model.apply_model(*args, **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\modules\sd_hijack_utils.py", line 17, in setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs)) File "C:\Users\ZeroCool22\Desktop\Auto\modules\sd_hijack_utils.py", line 28, in call return self.__orig_func(*args, **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 858, in apply_model x_recon = self.model(x_noisy, t, **cond) File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 1329, in forward out = self.diffusion_model(x, t, context=cc) File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 776, in forward h = module(h, emb, context) File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 84, in forward x = layer(x, context) File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 324, in forward x = block(x, context=context[i]) File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 259, in forward return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) File "C:\Users\ZeroCool22\Desktop\Auto\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 114, in checkpoint return CheckpointFunction.apply(func, len(inputs), *args) File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\torch\autograd\function.py", line 506, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File "C:\Users\ZeroCool22\Desktop\Auto\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 129, in forward output_tensors = ctx.run_function(*ctx.input_tensors) File "C:\Users\ZeroCool22\Desktop\Auto\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 262, in _forward x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in call_impl return forward_call(*args, **kwargs) File "C:\Users\ZeroCool22\Desktop\Auto\modules\sd_hijack_optimizations.py", line 342, in xformers_attention_forward out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v)) File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\xformers\ops\fmha_init.py", line 196, in memory_efficient_attention return memory_efficient_attention( File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\xformers\ops\fmha_init.py", line 292, in _memory_efficient_attention return memory_efficient_attention_forward( File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\xformers\ops\fmha_init.py", line 312, in memory_efficient_attention_forward out, * = op.apply(inp, needs_gradient=False) File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\xformers\ops\fmha\cutlass.py", line 175, in apply out, lse, rng_seed, rng_offset = cls.OPERATOR( File "C:\Users\ZeroCool22\Desktop\Auto\venv\lib\site-packages\torch_ops.py", line 502, in call return self._op(*args, **kwargs or {}) RuntimeError: CUDA error: no kernel image is available for execution on the device CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with TORCH_USE_CUDA_DSA to enable device-side assertions.`